Geothermal FAQ

In light of the announcement for Alberta No. 1, Alberta's first conventional geothermal power facility, Terrapin sat down with its Chief Geologist,

Dr. Catherine Hickson, P.Geo,

to answer the following questions:

 

In comparison to the rest of the world, Canada’s geothermal industry is in its infancy. As Canadians, we are incredibly thankful to have significant oil and gas resources and hydropower - but these resources are not conducive to the development of a geothermal industry.

 

In the 1970s, there was a global oil crisis. With escalating costs and a fear that we would run out of oil, many countries were looking at alternatives for power generation and heating. This sparked great enthusiasm for geothermal projects.

 

By the 1980s, the oil crisis was over, and the impetus for geothermal was essentially gone. As time went on, entering the mid to late 2000s, the price of oil skyrocketed again, causing another quest for alternative energy sources which benefited geothermal projects.

 

Both geothermal rushes were in response to global oil and gas prices. At present day, here in Alberta, most of us heat our homes with natural gas. It’s cheap and plentiful, so people ask, why do we need geothermal? It has taken a change in the total perspective of society and an interest in sustainability and environmental factors to turn this around. As educated consumers, we now ask, “where is this heat coming from? Is there a cleaner alternative?”

 

Hydrocarbons have important chemical properties that are not reproducible in other ways, making it well-suited for unique uses outside of energy - let’s  keep hydrocarbons for what they are uniquely suited for, and diversify and build resiliency in our heat and power sources with geothermal energy.

 

Geothermal as a resource can be used for both heating and electricity. What many do not necessarily understand is the energy needed for heating, and how thermal energy from geothermal resources meets that need.

With geothermal, the opportunities do not stop at clean electricity production. Geothermal can also be useful for energy-intensive heating purposes, such as:

  • Fruit and vegetable drying

  • Greenhouses

  • Soil warming and sterilization

  • Aquaculture

  • Snow melting and de-icing roads and sidewalks

  • Building heating and cooling

  • Heating for industrial processes

  • Hot springs pools

  • Water heating (bathhouses, saunas)

  • Heating recreation centres

  • Lumber drying

  • Pulp and paper processing

In a cold country like Canada, where the average temperature is 1°C, geothermal is more important in terms of its thermal capacity - its ability to heat things - than it is in terms of its electrical capacity. We need heat! More than 60% of our energy needs is actually spent on heating. Compared to other energy sources, geothermal is the only clean resource that is capable of effectively heating and providing electricity on a massive scale.

Missed the news? Read more about the applications of geothermal in our press release for project Alberta No 1. Locating in the Tri-Municipal Industrial Park in Greenview, this project will generate 5 megawatts (MW) net of clean, emissions-free, baseload electricity and provide residual thermal energy to an industrial park district heating system.

 

Heat is found in rocks deep underground. When these rocks have naturally occurring water (in the form of hot salty water, aka brine), this water can be pumped to surface to create electricity and supply heat to process and places that need it.

To run a geothermal energy facility:

  • A developer first drills a test well, around 2000 to 4000 meters in depth.

  • If the brine is hot enough for the intended purpose, a large diameter production well will be drilled, along with an adjacent injection well.

  • After the wells and power facility infrastructure are established, brine heated by the Earth's thermal energy is pumped to the surface.

  • Thermal energy is extracted from the brine for useful work and is cycled back underground, where it will heat up again.

  • Drilling and completion process is nearly identical to that of the oil and gas industry.

 

Environmentally, the extraction of geothermal energy has one of the lowest impacts of any of the renewable energy sources: it requires much less surface area per megawatt (see diagram); it does not impact surface water and freshwater reservoirs, nor oil and gas resources; it does not create greenhouse gas emissions; and it is available 24/7, 365 days a year. The constant (baseload) generation of clean electricity and heat can be a major contributor in lowering Canada’s greenhouse gas emissions and transitioning the nation to a resilient and sustainable energy mix.

Comparison of Surface Area Utilization of Energy Sources

Economically, harnessing geothermal energy can be one of the employment drivers in Canada's energy sector. The drilling of geothermal wells and the maintenance of power plants can be done with many of the skills and technical expertise gained from decades as energy leaders in oil and gas.

Many industries in Canada require heating for buildings and industrial processing. Heating is energy- and capital-intensive. Geothermal can offset this high energy demand and cost with large-scale district heating systems.

With multiple applications for geothermal, such as drying for crops, aquaculture, and heating for greenhouses and infrastructure, this heat and energy resource can attract investment and economic development to a region.

 

Terrapin is proud to be a member of industry association Geothermal Canada alongside other Canadian geothermal companies such as DEEP Corporation, Eavor Technologies, and Barkley Group.

The Canadian Geothermal Association, rebranded in 2018 as Geothermal Canada, was founded in 1974. The impetus for the founding came from the inaugural Geothermal Resources Council meeting in Brawley, California in 1973. A professional organization wanting to share technology, resources, and experiences, Geothermal Canada is not a lobby group but a scientifically oriented venue for discussion of technical and academic aspects of the industry. Geothermal Canada seeks to provide expertise to all interested parties and further geothermal collaboration and innovation in Canada.

 

Dr. Catherine Hickson is the Chief Geologist of Terrapin Geothermics, a Canadian energy project development and engineering firm. Dr. Hickson leads all geotechnical work for Terrapin, providing industry knowledge and expertise for Alberta No. 1, Alberta's first conventional geothermal energy facility.

Dr. Hickson's project highlights encompass greenfield exploration in eight countries, and discovery of geothermal resources (around 320 MW, inferred) and operating plants, including Soda Lake 15 MWe), Svartsengi (75 MWe) and Reykjanes (100 MWe).

Dr. Hickson is also the President of Geothermal Canada, an organization founded in 1974 to assist Canadians and Canadian companies in the development of geothermal resources nationally and globally.